Từ các chữ số 1, 2, 3, 4, 5, 6 lập các số tự nhiên gồm 6 chữ số khác nhau hỏi có tất cả bao nhiêu số

Với các chữ số \(2;\;3;\;4;\;5;\;6\) có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau trong đó hai chữ số \(2;\;3\) không đứng cạnh nhau?

A. 120
B. 96
C. 48
D. 72

Số cần tìm có dạng \(\overline {abcde} \).

Ta xét có bao nhiêu số dạng \(\overline {abcde} \) lập từ các chữ số \(2,3,4,5,6\) :

– Chọn a : có 5 cách

– Chọn b : có 4 cách

– Chọn c : có 3 cách

– Chọn d : có 2 cách

– Chọn e : có 1 cách

Có \(5 \times 4 \times 3 \times 2 \times 1 = 120\) số lập từ 5 chữ số trên.

adsense

Ta xét có bao nhiêu số dạng \(\overline {abcde} \) lập từ các chữ số \(2,3,4,5,6\), mà chữ số 2 và 3 đứng cạnh nhau.

Nhận xét : có 4 vị trí gần nhau là \(\overline {ab} ,\,\,\overline {\,bc\,\,} \,,\,\,\,\overline {cd} ,\,\,\,\overline {de} \).

Với mỗi vị trí đứng gần nhau, chữ số 2 có thể đứng trước hoặc sau chữ số 3, vậy có 2 cách sắp xếp vị trí cho 2 và 3.

Với 3 vị trí còn lại để xếp các chữ số 4, 5, 6.

– Chữ số 4 có 3 cách xếp

– Chữ số 5 có 2 cách xếp

– Chữ số 6 có 1 cách xếp

Vậy sẽ có \(3 \times 2\, \times 1 = 6\) cách để xếp 3 chữ số 4, 5, 6.

Vậy có tất cả : \(4 \times 2 \times 6 = 48\) số dạng \(\overline {abcde} \) lập từ các chữ số \(2,3,4,5,6\), mà chữ số 2 và 3 đứng cạnh nhau.

Đặt A = {1, 2, 3, 4, 5, 6}.

n(A) = 6.

Chọn một số nhỏ hơn 432.000 ta có hai cách chọn :

Cách 1 : Chọn số có chữ số hàng trăm nghìn nhỏ hơn 4.

   + Chọn chữ số hàng trăm nghìn : Có 3 cách (1, 2 hoặc 3).

   + Sắp xếp 5 chữ số còn lại : Có P5 = 120 cách.

⇒ Theo quy tắc nhân: Có 3.120 = 360 số thỏa mãn.

Cách 2 : Chọn số có chữ số hàng trăm nghìn bằng 4. Tiếp tục có 2 cách thực hiện.

   - Chọn chữ số hàng chục nghìn nhỏ hơn 3 :

      + Chọn chữ số hàng chục nghìn : Có 2 cách (Chọn 1 hoặc 2).

      + Sắp xếp 4 chữ số còn lại : Có P4 = 24 cách.

      ⇒ Theo quy tắc nhân: Có 2.24 = 48 số thỏa mãn.

   - Chọn chữ số hàng chục nghìn bằng 3, khi đó :

      + Chữ số hàng nghìn : Có 1 cách chọn (Phải bằng 1).

      + Sắp xếp 3 chữ số còn lại : Có P3 = 6 cách chọn

      ⇒ Theo quy tắc nhân: Có 1.6 = 6 số thỏa mãn.

   ⇒ Theo quy tắc cộng: Có 48 + 6 = 54 số thỏa mãn có chữ số hàng trăm nghìn bằng 4.

⇒ Có: 360 + 54 = 414 số nhỏ hơn 432 000.

Đặt A = {1, 2, 3, 4, 5, 6}.

n(A) = 6.

có 720 số tự nhiên có 6 chữ số được lập từ các số trên

Việc lập các số chẵn là việc chọn các số có tận cùng bằng 2, 4 hoặc 6.

Gọi số cần lập là abcdef

+ Chọn f : Có 3 cách chọn (2 ; 4 hoặc 6)

+ Chọn e : Có 5 cách chọn (khác f).

+ Chọn d : Có 4 cách chọn (khác e và f).

+ Chọn c : Có 3 cách chọn (khác d, e và f).

+ Chọn b : Có 2 cách chọn (khác c, d, e và f).

+ Chọn a : Có 1 cách chọn (Chữ số còn lại).

⇒ Theo quy tắc nhân: Có 3.5.4.3.2.1 = 360 (cách chọn).

Vậy có 360 số chẵn, còn lại 720 – 360 = 360 số lẻ.

Với giải Bài tập 1 trang 54 SGK Toán lớp 11 Đại số và Giải tích được biên soạn lời giải chi tiết sẽ giúp học sinh biết cách làm bài tập môn Toán 11. Mời các bạn đón xem:

1 48434 lượt xem


Trang trước

Chia sẻ

Trang sau  


Giải Toán 11 Bài 2: Hoán vị - chỉnh hợp – tổ hợp

Video Giải Bài tập 1 trang 54 SGK Toán lớp 11 Đại số

Bài tập 1 trang 54 SGK Toán lớp 11 Đại số: Từ các chữ số 1, 2, 3, 4, 5, 6, lập các số tự nhiên gồm 6 chữ số khác nhau. Hỏi:

a) Có tất cả bao nhiêu số?

Quảng cáo

b) Có bao nhiêu số chẵn, bao nhiêu số lẻ?

c) Có bao nhiêu số bé hơn 432 000?

Lời giải:

a) Cách 1: Mỗi số tự nhiên có 6 chữ số khác nhau là một cách sắp xếp 6 chữ số hay một hoán vị của 6 phần tử:

Vậy có P6 = 6! = 720 (số)

Cách 2: Số tự nhiên có thể có là abcdef¯, với a, b, c, d, e, f∈1;2;3;4;5;6 và a, b, c, d, e, f  đôi một khác nhau.

a có 6 cách

b≠a nên có 5 cách chọn

c≠b,a nên có 4 cách chọn

d≠c,b,a nên có 3 cách chọn

Quảng cáo

e≠d,c,b,a nên có 2 cách chọn

f≠e,d,c,b,a nên có 1 cách chọn

Vậy theo quy tắc nhân ta có 6.5.4.3.2.1 = 720 số

b) Số tự nhiên chẵn cần lập có dạng abcdef¯, với a, b, c, d, e, f ∈1;2;3;4;5;6, có kể đến thứ tự, f chia hết cho 2 .