Where is sodium is found mainly in the extracellular fluid most is found in the intracellular fluid?

Learn about this topic in these articles:

Assorted References

role in

    • dehydration
      • Where is sodium is found mainly in the extracellular fluid most is found in the intracellular fluid?

        In dehydration: Symptoms and progression

        …the result of this subsequent intracellular dehydration and increased intracellular osmotic pressure. Experimentally, thirst can be produced when the cells have lost about 1 percent of their intracellular water.

        Read More
    • excretory system diseases
      • Where is sodium is found mainly in the extracellular fluid most is found in the intracellular fluid?

        In renal system disease: Effects of abnormal renal function on body fluid

        Intracellular fluids, amounting to 33 percent of body weight, have potassium as their predominant cation. These various “compartments” of body fluid are in osmotic equilibrium, so that if solute (e.g., sodium chloride) is added to the extracellular compartment so as to increase the concentration of…

        Read More
    • homeostasis
      • Where is sodium is found mainly in the extracellular fluid most is found in the intracellular fluid?

        In human disease: Fluid and electrolyte balance

        The intracellular fluid is the fluid contained within cells. The extracellular fluid—the fluid outside the cells—is divided into that found within the blood and that found outside the blood; the latter fluid is known as the interstitial fluid. These fluids are not simply water but contain…

        Read More

    Topic Resources

    Body fluid volume and electrolyte concentration are normally maintained within very narrow limits despite wide variations in dietary intake, metabolic activity, and environmental stresses. Homeostasis of body fluids is preserved primarily by the kidneys.

    Water and sodium balance are closely interdependent. Total body water (TBW) is about 60% of body weight in men (ranging from about 50% in obese people to 70% in lean people) and about 50% in women. Almost two thirds of TBW is in the intracellular compartment (intracellular fluid, or ICF); the other one third is extracellular (extracellular fluid, or ECF). Normally, about 25% of the ECF is in the intravascular compartment; the other 75% is interstitial fluid (see figure Fluid compartments in an average 70-kg man Fluid compartments in an average 70-kg man

    Where is sodium is found mainly in the extracellular fluid most is found in the intracellular fluid?
    ).

    Fluid compartments in an average 70-kg man

    Total body water = 70 kg × 0.60 = 42 L (280 mOsm/kg [280 mmol/kg]).

    The major intracellular cation is potassium. The major extracellular cation is sodium. Concentrations of intracellular and extracellular cations are as follows:

    • Intracellular potassium concentration averages 140 mEq/L (140 mmol/L).

    • Extracellular potassium concentration is 3.5 to 5 mEq/L (3.5 to 5 mmol/L).

    • Intracellular sodium concentration is 12 mEq/L (12 mmol/L).

    • Extracellular sodium concentration averages 140 mEq/L (140 mmol/L).

    The concentration of combined solutes in water is osmolarity (amount of solute per L of solution), which, in body fluids, is similar to osmolality (amount of solute per kg of solution). Plasma osmolality can be measured in the laboratory or estimated according to the formula

    Estimated plasma osmolality in conventional units (mOsm/kg ) =

    Where is sodium is found mainly in the extracellular fluid most is found in the intracellular fluid?

    where serum sodium (Na) is expressed in mEq/L, and glucose and blood urea nitrogen (BUN) are expressed in mg/dL.

    Estimated plasma osmolality in SI units is 2[serum Na] + glucose + urea where all values are expressed in mmol/L.

    Osmolality of body fluids is normally between 275 and 290 mOsm/kg (275 and 290 mmol/kg). Sodium is the major determinant of plasma osmolality. Apparent changes in calculated osmolality may result from errors in the measurement of sodium, which can occur in patients with hyperlipidemia or extreme hyperproteinemia because the lipid or protein occupies space in the volume of serum taken for analysis; the concentration of sodium in serum itself is not affected. Newer methods of measuring serum electrolytes with direct ion-selective electrodes circumvent this problem. An osmolar gap is present when measured osmolality exceeds estimated osmolality by 10 mOsm/kg ( ≥ 10 mmol/kg). It is caused by unmeasured osmotically active substances present in the plasma. The most common are alcohols (ethanol, methanol, isopropanol, ethylene glycol), mannitol, and glycine.

    Water crosses cell membranes freely from areas of low solute concentration to areas of high solute concentration. Thus, osmolality tends to equalize across the various body fluid compartments, resulting primarily from movement of water, not solutes. Solutes such as urea that freely diffuse across cell membranes have little or no effect on water shifts (little or no osmotic activity), whereas solutes that are restricted primarily to one fluid compartment, such as sodium and potassium, have the greatest osmotic activity.

    Tonicity, or effective osmolality, reflects osmotic activity and determines the force drawing water across fluid compartments (the osmotic force). Osmotic force can be opposed by other forces. For example, plasma proteins have a small osmotic effect that tends to draw water into the plasma; this osmotic effect is normally counteracted by vascular hydrostatic forces that drive water out of the plasma.

    The average daily fluid intake is about 2.5 L. The amount needed to replace losses from the urine and other sources is about 1 to 1.5 L/day in healthy adults. However, on a short-term basis, an average young adult with normal kidney function may ingest as little as 200 mL of water each day to excrete the nitrogenous and other wastes generated by cellular metabolism. More is needed in people with any loss of renal concentrating capacity. Renal concentrating capacity is lost in

    • Older people

    • People with diabetes insipidus Central Diabetes Insipidus Diabetes insipidus results from a deficiency of vasopressin (antidiuretic hormone [ADH]) due to a hypothalamic-pituitary disorder (central diabetes insipidus) or from resistance of the kidneys... read more , certain kidney disorders, hypercalcemia Hypercalcemia Hypercalcemia is a total serum calcium concentration > 10.4 mg/dL (> 2.60 mmol/L) or ionized serum calcium > 5.2 mg/dL (> 1.30 mmol/L). Principal causes include hyperparathyroidism, vitamin... read more , severe salt restriction, chronic overhydration Volume Overload Volume overload generally refers to expansion of the extracellular fluid (ECF) volume. ECF volume expansion typically occurs in heart failure, kidney failure, nephrotic syndrome, and cirrhosis... read more , or hyperkalemia Hyperkalemia Hyperkalemia is a serum potassium concentration > 5.5 mEq/L (> 5.5 mmol/L), usually resulting from decreased renal potassium excretion or abnormal movement of potassium out of cells. There are... read more

    • People who ingest ethanol, phenytoin, lithium, demeclocycline, or amphotericin B

    • People with osmotic diuresis (eg, due to high-protein diets or hyperglycemia)

    Other obligatory water losses are mostly insensible losses from the lungs and skin, averaging about 0.4 to 0.5 mL/kg/hour or about 650 to 850 mL/day in a 70-kg adult. With fever, another 50 to 75 mL/day may be lost for each degree Celsius of temperature elevation above normal. Gastrointestinal losses are usually negligible, except when marked vomiting, diarrhea, or both occur. Sweat losses can be significant during environmental heat exposure or excessive exercise.

    Water intake is regulated by thirst. Thirst is triggered by receptors in the anterolateral hypothalamus that respond to increased plasma osmolality (as little as 2%) or decreased body fluid volume. Rarely, hypothalamic dysfunction decreases the capacity for thirst.

    Water excretion by the kidneys is regulated primarily by vasopressin (antidiuretic hormone [ADH]). Vasopressin is released by the posterior pituitary and results in increased water reabsorption in the distal nephron. Vasopressin release is stimulated by any of the following:

    • Increased plasma osmolality

    • Decreased blood volume

    • Decreased blood pressure

    • Stress

    Vasopressin release may be impaired by certain substances (eg, ethanol, phenytoin), by tumors or infiltrative disorders affecting the posterior pituitary, and by trauma to the brain. In many cases a specific cause cannot be identified.

    Water intake decreases plasma osmolality. Low plasma osmolality inhibits vasopressin secretion, allowing the kidneys to produce dilute urine. The diluting capacity of healthy kidneys in young adults is such that maximum daily fluid intake can be as much as 25 L; greater amounts quickly lower plasma osmolality.

    Click here for Patient Education

    NOTE: This is the Professional Version. CONSUMERS: Click here for the Consumer Version

    Where is sodium is found mainly in the extracellular fluid most is found in the intracellular fluid?

    Copyright © 2022 Merck & Co., Inc., Rahway, NJ, USA and its affiliates. All rights reserved.

    Where is sodium is found mainly in the extracellular fluid most is found in the intracellular fluid?

    What is found in intracellular fluid?

    The cytosol or intracellular fluid consists mostly of water, dissolved ions, small molecules, and large, water-soluble molecules (such as proteins). This mixture of small molecules is extraordinarily complex, as the variety of enzymes that are involved in cellular metabolism is immense. Ions: Ions in solution.

    Where is sodium mainly found ICF or ECF?

    Most of the sodium in our body is located outside the cells, in the extracellular fluid, or ECF for short. In the extracellular fluid, sodium has a concentration of about 135 milliequivalents (mEq) per liter.

    Where is sodium found in the body?

    Most of the body's sodium is located in blood and in the fluid around cells. Sodium helps the body keep fluids in a normal balance (see About Body Water. Fat tissue has a lower percentage of water than lean tissue and women tend to have more fat, so the percentage... read more ).

    Where is most extracellular fluid found?

    Extracellular fluid includes all of the fluids found outside of the cell and in the interstitial spaces between cells. Making up nearly 20% of human body weight, extracellular fluid is primarily found in the interstitial space located between cells and tissues.